Wednesday, December 29, 2010

Manfaat Sel Surya

A. Pengertian Sel Surya
Sel surya adalah alat yang penting bagi kemajuan pengembangan teknologi energi. Alat ini bekerja melalui suatu mekanisme yang dikenal dengan nama efek fotovoltaik. Bila kita mendengar kata foto, tentu saja berkaitan dengan kata cahaya karena kata foto berasal dari kata foton yang berarti partikel cahaya atau unit-unit penyusun cahaya. Kata volt tentu saja berhubungan dengan bidang kelistrikan. Volt merupakan satuan yang digunakan untuk menyatakan besarnya tegangan/beda potensial antara 2 kutub yang berbeda (positif dan negatif).
Teknologi sel surya berkembang dari tahun ke tahun. Teknologi pertama yang berkembang adalah sel surya berbasis silikon. Teknologi ini cukup mahal, sehingga sulit untuk diaplikasikan dalam skala industri. Saat ini, telah berkembang sel surya pewarna tersensitasi (SSPT) yang merupakan sel surya generasi ketiga. Sel surya jenis ini menggunakan pewarna dari bahan alam, seperti temulawak dan buah mangsi. Prof. Dr. Syafsir Akhlus adalah dosen kimia ITS yang berkecimpung dalam bidang ini dan mendapat gelar Profesor karena keahliannya dalam bidang fotokimia. Begitu pentingnya pemanfaatan sel surya ini, mengingat cadangan bahan bakar fosil yang merupakan sumber daya alam yang tidak dapat diperbarui dalam waktu singkat semakin menipis jumlahnya.
Untuk menghasilkan daya dalam jumlah yang besar, umumnya sel surya dalam jumlah yang banyak dirangkai menjadi suatu array photovoltaic, Seperti yang biasa kita lIhat pada umumnya. Adapun energi foton yang dimaksud diatas (ingat pelajaran fisika…) bisa didapatkan dari sinar matahari, selain itu sebenarnya bisa juga kita dapatkan dari sinar lampu pijar hanya saja pasti sangat kecil. kenapa lampu pijar bukan neon? karena lampu neon sinarnya tidak kontinyu, pada kenyataannya dia berkedip-kedip dengan frekuensi sekian Hz, hanya saja itu terjadi dalam waktu yang sangat singkat sehingga mata kita yang terbatas ini melihatnya seolah-olah sinarnya kontinyu. hmm…kesimpulan pastinya yang dikonversi oleh solar cell adalah sinar,,,bukan panas!
Kekurangan solar cell dibandingkan sumber listrik lain yaitu hingga kini tingkat efisiensi konversi energinya masih terbilang kecil dan harganya pun masih relatif mahal. Pada dasarnya tingkat efisiensi sel surya bergantung pada bahan atau material penyusun sel, permukaan kristal, pengaruh crystal defects. Nah, Seandainya, kalau seandainya nih, kita bisa membuat sebuah sel surya yang mempunyai efisiensi tinggi maka kita bisa membuat sumber energi saingan dari BBM yang notabene (apa ya bahasa indonesianya?) tidak ramah lingkungan. Jadi, kabar baiknya bisa dikatakan potensi Solar Cell ini masih sangat besar untuk kita kembangkan, apalagi kita tahu sinar matahari itu sumber energi terbarukan.
Pembangkit Listrik Tenaga Surya (PLTS), adalah pembangkit yang memanfaatkan sinar matahari sebagai sumber penghasil listrik. Alat utama untuk menangkap, perubah dan penghasil listrik adalah Photovoltaic atau yang disebut secara umum Modul / Panel Solar Cell. Dengan alat tersebut sinar matahari dirubah menjadi listrik melalui proses aliran-aliran elektron negatif dan positif didalam cell modul tersebut karena perbedaan electron. Hasil dari aliran elektron-elektron akan menjadi listrik DC yang dapat langsung dimanfatkan untuk mengisi battery / aki sesuai tegangan dan ampere yang diperlukan. Rata-rata produk modul solar cell yang ada dipasaran menghasilkan tegangan 12 s/d 18 VDC dan ampere antara 0.5 s/d 7 Ampere. Modul juga memiliki kapasitas beraneka ragam mulai kapsitas 10 Watt Peak s/d 200 Watt Peak juga memiliki type cell monocrystal dan polycrystal. Komponen inti dari sistem PLTS ini meliputi peralatan : Modul Solar Cell, Regulator / controller, Battery / Aki, Inverter DC to AC, Beban / Load. Perusahaan kami telah mengembangkan beberapa produk PLTS yang digunakan untuk rumah tangga dengan skala kecil, contoh paket produk kami adalah Penerangan Listrik Rumah (PLR). Dengan paket produk PLR tersebut dapat dimanfaatkan untuk para penduduk di Indonesia untuk solusi akan kebutuhan listrik yang di daerahnya sulit dijangkau listrik PLN atau di daerah pelosok dan produk paket PLR ini dari waktu ke waktu juga dibutuhkan beberapa konsumen perkotaan dan perusahaan dengan maksud mengkombinasikan dengan listrik PLN. Rata-rata produk paket PLR ini digunakan untuk lampu-lampu penerangan di rumah, kantor, tempat ibadah, tempat umum dengan skala kecil dan menengah dan hasilnya dari penggunaan tersebut kalau dihitung secara besar diseluruh Indonesia, maka defisit akan listrik PLN akan teratasi karena PLR turut membantu dalam program penghematan listrik. Bayangkan bila tiap rumah, kantor, tempat ibadah, tempat umum di seluruh pulau jawa beberapa peralatan lampu penerangannya diganti / dikombinasi dengan sistem PLTS, maka penghematan dalam listrik PLN akan terwujud secara nyata. Kalo ragu coba dihitung saja, misal 3 lampu 8 Watt (PLS/Cool day light, lumen cahanya sama dengan lampu pijar 40 Watt)untuk tiap rumah menggunakan PLTS maka, (8 Watt x 3 buah) x 20juta/malam(Perkiraan Pemakai PLN) = 480.000.000 Watt/malam. Bayangkan berapa besar penghematan dalam 1 malam saja!. Kami bukan mempromosikan produk kami agar bisa terjual, cuma kami membantu kelangkaan / kesulitan akan energi khususnya listrik yang semakin lama sulit didapat. Hanya dengan karya yang nyata dan bukan program sana-sini tapi gak ada hasil serta semua tergantung kesadaran kita bersama. Salam MATAHARI....!!! sumber energi yang selalu terbit dan akan lenyap selamanya pada waktu kiamat!!!

B. Teknologi Sel Surya Untuk Sumber Energi Masa Depan
Suplai energi surya dari sinar matahari yang diterima oleh permukaan bumi sebenarnya sangat luar biasa besarnya yaitu mencapai 3 x 1024 joule pertahun. Jumlah energi sebesar itu setara dengan 10.000 kali konsumsi energi di seluruh dunia saat ini. Dengan kata lain, dengan menutup 0,1% saja permukaan bumi dengan divais solar sel yang memiliki efisiensi 10% sudah mampu untuk menutupi kebutuhan energi di seluruh dunia saat ini. Perkembangan yang pesat dari industri sel surya (solar sel) di mana pada tahun 2004 telah menyentuh level 1000 MW membuat banyak kalangan semakin melirik sumber energi masa depan yang sangat menjanjikan ini.
Energi yang dikeluarkan oleh sinar matahari sebenarnya hanya diterima oleh permukaan bumi sebesar 69% dari total energi pancaran matahari [1]. Suplai energi surya dari sinar matahari yang diterima oleh permukaan bumi sangat luar biasa besarnya yaitu mencapai 3 x 1024 joule pertahun, energi ini setara dengan 2 x 1017 Watt [1]. Jumlah energi sebesar itu setara dengan 10.000 kali konsumsi energi di seluruh dunia saat ini. Dengan kata lain, dengan menutup 0.1% saja permukaan bumi dengan divais solar sel yang memiliki efisiensi 10% sudah mampu untuk menutupi kebutuhan energi di seluruh dunia saat ini [2].
Cara kerja sel surya adalah dengan memanfaatkan teori cahaya sebagai partikel. Sebagaimana diketahui bahwa cahaya baik yang tampak maupun yang tidak tampak memiliki dua buah sifat yaitu dapat sebagai gelombang dan dapat sebagai partikel yang disebut dengan photon. Penemuan ini pertama kali diungkapkan oleh Einstein pada tahun 1905. Energi yang dipancarkan oleh sebuah cahaya dengan panjang dan frekuensi photon l gelombang V dirumuskan dengan persamaan:
E l= h.c /λ
Dengan h adalah konstanta Plancks (6.62 x 10-34 J.s) dan c adalah kecepatan cahaya dalam vakum (3.00 x 108 m/s). Persamaan di atas juga menunjukkan bahwa photon dapat dilihat sebagai sebuah partikel energi atau sebagai gelombang dengan panjang gelombang dan frekuensi tertentu [3]. Dengan menggunakan sebuah divais semikonduktor yang memiliki permukaan yang luas dan terdiri dari rangkaian dioda tipe p dan n, cahaya yang datang akan mampu dirubah menjadi energi listrik.

Hingga saat ini terdapat beberapa jenis solar sel yang berhasil dikembangkan oleh para peneliti untuk mendapatkan divais solar sel yang memiliki efisiensi yang tinggi atau untuk mendapatkan divais solar sel yang murah dan mudah dalam pembuatannya.
Tipe pertama yang berhasil dikembangkan oleh para peneliti adalah jenis wafer (berlapis) silikon kristal tunggal. Tipe ini dalam perkembangannya mampu menghasilkan efisiensi yang sangat tinggi. Masalah terbesar yang dihadapi dalam pengembangan silikon kristal tunggal untuk dapat diproduksi secara komersial adalah harga yang sangat tinggi sehingga membuat solar sel panel yang dihasilkan menjadi tidak efisien sebagai sumber energi alternatif. Sebagian besar silikon kristal tunggal komersial memiliki efisiensi pada kisaran 16-17%, bahkan silikon solar sel hasil produksi SunPower memiliki efisiensi hingga 20% [www.sunpowercorp.com]. Bersama perusahaan Shell Solar, SunPower menjadi perusahaan yang menguasai pasar silikon kristal tunggal untuk solar sel.
Jenis solar sel yang kedua adalah tipe wafer silikon poli kristal. Saat ini, hampir sebagian besar panel solar sel yang beredar di pasar komersial berasal dari screen printing jenis silikon poli cristal ini. Wafer silikon poli kristal dibuat dengan cara membuat lapisan lapisan tipis dari batang silikon dengan metode wire-sawing. Masing-masing lapisan memiliki ketebalan sekitar 250–350 micrometer. Jenis solar sel tipe ini memiliki harga pembuatan yang lebih murah meskipun tingkat efisiensinya lebih rendah jika dibandingkan dengan silikon kristal tunggal. Perusahaan yang aktif memproduksi tipe solar sel ini adalah GT Solar, BP, Sharp, dan Kyocera Solar.
Kedua jenis silikon wafer di atas dikenal sabagai generasi pertama dari solar sel yang memiliki ketebalan pada kisaran 180 hingga 240 mikro meter. Penelitian yang lebih dulu dan telah lama dilakukan oleh para peneliti menjadikan solar sel berbasis silikon ini telah menjadi teknologi yang berkembang dan banyak dikuasai oleh peneliti maupun dunia industri. Divais solar sel ini dalam perkembangannya telah mampu mencapai usia aktif mencapai 25 tahun [1]. Modifikasi untuk membuat lebih rendah biaya pembuatan juga dilakukan dengan membuat pita silikon (ribbon si) yaitu dengan membuat lapisan dari cairan silikon dan membentuknya dalam struktur multi kristal. Meskipun tipe sel surya pita silikon ini memiliki efisiensi yang lebih rendah (13-15%), tetapi biaya produksinya bisa lebih dihemat mengingat silikon yang terbuang dengan menggunakan cairan silikon akan lebih sedikit.
Generasi kedua solar sel adalah solar sel tipe lapisan tipis (thin film). Ide pembuatan jenis solar sel lapisan tipis adalah untuk mengurangi biaya pembuatan solar sel mengingat tipe ini hanya menggunakan kurang dari 1% dari bahan baku silikon jika dibandingkan dengan bahan baku untuk tipe silikon wafer. Dengan penghematan yang tinggi pada bahun baku seperti itu membuat harga per KwH energi yang dibangkitkan menjadi bisa lebih murah.
Metode yang paling sering dipakai dalam pembuatan silikon jenis lapisan tipis ini adalah dengan PECVD dari gas silane dan hidrogen. Lapisan yang dibuat dengan metode ini menghasilkan silikon yang tidak memiliki arah orientasi kristal atau yang dikenal sebagai amorphous silikon (non kristal). Selain menggunakan material dari silikon, solar sel lapisan tipis juga dibuat dari bahan semikonduktor lainnya yang memiliki efisiensi solar sel tinggi seperti Cadmium Telluride (Cd Te) dan Copper Indium Gallium Selenide (CIGS).
Efisiensi tertinggi saat ini yang bisa dihasilkan oleh jenis solar sel lapisan tipis ini adalah sebesar 19,5% yang berasal dari solar sel CIGS [5]. Keunggulan lainnya dengan menggunakan tipe lapisan tipis adalah semikonduktor sebagai lapisan solar sel bisa dideposisi pada substrat yang lentur sehingga menghasilkan divais solar sel yang fleksibel. Kedua generasi dari solar sel ini masih mendominasi pasaran solar sel di seluruh dunia dengan silikon kristal tunggal dan multi kristal memiliki lebih dari 84% solar sel yang ada dipasaran
Penelitian agar harga solar sel menjadi lebih murah selanjutnya memunculkan generasi ketiga dari jenis solar sel ini yaitu tipe solar sel polimer atau disebut juga dengan solar sel organik dan tipe solar sel foto elektrokimia. Solar sel organik dibuat dari bahan semikonduktor organik seperti polyphenylene vinylene dan fullerene.
Berbeda dengan tipe solar sel generasi pertama dan kedua yang menjadikan pembangkitan pasangan electron dan hole dengan datangnya photon dari sinar matahari sebagai proses utamanya, pada solar sel generasi ketiga ini photon yang datang tidak harus menghasilkan pasangan muatan tersebut melainkan membangkitkan exciton. Exciton inilah yang kemudian berdifusi pada dua permukaan bahan konduktor (yang biasanya di rekatkan dengan organik semikonduktor berada di antara dua keping konduktor) untuk menghasilkan pasangan muatan dan akhirnya menghasilkan efek arus foto (photocurrent)

Tipe solar sel photokimia merupakan jenis solar sel exciton yang terdiri dari sebuah lapisan partikel nano (biasanya titanium dioksida) yang di endapkan dalam sebuah perendam (dye). Jenis ini pertama kali diperkenalkan oleh Profesor Graetzel pada tahun 1991 sehingga jenis solar sel ini sering juga disebut dengan Graetzel sel atau dye-sensitized solar cells (DSSC)
Graetzel sel ini dilengkapi dengan pasangan redok yang diletakkan dalam sebuah elektrolit (bisa berupa padat atau cairan). Komposisi penyusun solar sel seperti ini memungkinkan bahan baku pembuat Graetzel sel lebih fleksibel dan bisa dibuat dengan metode yang sangat sederhana seperti screen printing. Meskipun solar sel generasi ketiga ini masih memiliki masalah besar dalam hal efisiensi dan usia aktif sel yang masih terlalu singkat, solar sel jenis ini akan mampu memberi pengaruh besar dalam sepuluh tahun ke depan mengingat harga dan proses pembuatannya yang sangat murah.
Pertumbuhan teknologi sel surya di dunia memang menunjukkan harapan akan solar sel yang murah dengan memiliki efisiensi yang tinggi. Sayangnya sangat sedikit peneliti di Indonesia yang terlibat dengan hiruk pikuk perkembangan tentang teknologi sel surya ini. Sudah seharusnya pemerintah secara jeli melihat potensi masa depan Indonesia yang kaya akan sinar matahari ini dengan mendorong secara nyata penelitian di bidang energi surya ini.





C. Aplikasi Sel Surya
Gelombang yang timbul akibat medan listrik dan medan magnet disebut gelombang elektromagnet. Gelombang elektromagnet yang terlihat oleh pancaindera manusia adalah cahaya dengan panjang gelombang berkisar pada 300-700 nm (nanometer). Gelombang diatas panjang gelombang 700 nm adalah inframerah dan dibawah 300 nm adalah ultraviolet. Manusia telah banyak memanfaatkan energi yang terdapat pada gelombang elektomagnet sejak dahulu kala. Tapi pemahaman tentang gelombang ini sendiri baru dapat dianalisis oleh kita sekitar abad 10.
Seiring perkembangan zaman, pemanfaatan gelombang elektromagnet oleh manusia semakin sering dilakukan dalam kehidupan sehari-hari sesuai dengan perkembangan pemahaman tentang gelombang ini sendiri. Nama-nama seperti Isaac Newton dengan Hypothesis of Lightnya, Christian Huygens dengan teori rambat gelombang, Faraday dengan teori elektromagnetisme, James Clerk Maxwell yang berhasil memperbaiki teori rambat gelombangnya Christian Huygens, Max Planck dengan teori kuantum, Albert Einstein dan Louis de Broglie yang menyatakan bahwa cahaya adalah bentuk partikel dan gelombang dengan teori dualitas partikel-gelombang telah memberikan kontribusi yang besar dalam memanfaatkan gelombang elektromagnet dalam kehidupan sehari-hari.

Cahaya matahari yang merupakan pancaran gelombang elektromagnet adalah salah satu contoh dari sekian banyak bentuk energi yang dapat kita rasakan di bumi dan telah kita manfaatkan sumber dayanya berabad-abad. Pemberdayaan energi cahaya matahari pada setiap zaman semakin meningkat seiring dengan pengetahuan yang kita dapatkan dan salah satunya adalah Pembangkit Listrik Tenaga Surya (PLTS) yang memanfaatkan energi foton cahaya matahari menjadi energi listrik. Indonesia sendiri, sebuah negara yang dilewati oleh garis khatulistiwa dan menerima panas matahari yang lebih banyak daripada negara lain, mempunyai potensial yang sangat besar untuk mengembangkan pembangkit listrik tenaga surya sebagai alternatif batubara dan diesel sebagai pengganti bahan bakar fosil yang bersih, tidak berpolusi, aman dan persediaannya tidak terbatas. Berbagai instalasi sel surya telah banyak dipakai walaupun hanya pada beberapa golongan masyarakat mampu.
Bahan sel surya sendiri terdiri kaca pelindung dan material adhesive transparan yang melindungi bahan sel surya dari keadaan lingkungan, material anti-refleksi untuk menyerap lebih banyak cahaya dan mengurangi jumlah cahaya yang dipantulkan, semi-konduktor P-type dan N-type (terbuat dari campuran Silikon) untuk menghasilkan medan listrik, saluran awal dan saluran akhir (tebuat dari logam tipis) untuk mengirim elektron ke perabot listrik.
Cara kerja sel surya sendiri sebenarnya identik dengan piranti semikonduktor dioda. Ketika cahaya bersentuhan dengan sel surya dan diserap oleh bahan semi-konduktor, terjadi pelepasan elektron. Apabila elektron tersebut bisa menempuh perjalanan menuju bahan semi-konduktor pada lapisan yang berbeda, terjadi perubahan sigma gaya-gaya pada bahan. Gaya tolakan antar bahan semi-konduktor, menyebabkan aliran medan listrik. Dan menyebabkan elektron dapat disalurkan ke saluran awal dan akhir untuk digunakan pada perabot listrik. Bahan dan cara kerja yang aman terhadap lingkungan menjadikan sel surya sebagai salah satu hasil teknologi pembangkit listrik yang efisien bagi sumber energi alternatif masyarakat di masa depan. Memberikan harapan kepada kita untuk mengelola alam secara lebih “alamiah”.

2 komentar:

 
Copyright © . READ THIS ! ! ! - Posts · Comments
Theme Template by BTDesigner · Powered by Blogger